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Abstract 
Aqueous polynuclear systems have been analyzed, for which the family of formation curves intersects at a 

common point. The analyzed graphical and computational method for determining the stability constants can 

be used as initial values within the iterative calculation process. In some cases, the stability constants are 

calculated using only the coordinates of the common intersection point. The obtained equations could be of 

special interest when the experimental data can be interpreted in several models. In these cases, given the 

large volume of experimental data, the calculation is simple and the model can certainly be chosen with high 

safety. The obtained equations may also be applied for critical evaluation of tabular data if the coordinates 

of the intersection point are known. A series of real polynuclear systems have been analyzed and useful 

conclusions have been made. 
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INTRODUCTION 

At present, for the determination of the 

chemical equilibrium model, specially 

developed programs using modern computing 

techniques are used. However, despite the 

existing belief that the methods for 

determining the number, composition, and 

stability of species formed in the equilibrium 

system, in which several complex compounds 

of arbitrary composition are formed 

simultaneously, are studied well enough, in 

some cases to solve this task. Certain 

difficulties arise. First, in the case of the 

formation of several complex compounds, it is 

difficult to predict the model in the first 

approximation. Second, as a result of the 

computerized search, several models with 

values close to the minimum deviation squares 

are obtained [1-3]. The plurality of solutions 

to this problem, e.g. lack of a single solution, 

occurs when the existing information is 

insufficiently complete. 

As examples of the systems with an extremely 

large number of species formed, “core-link” 

complexes can serve, where they can vary 

within wide limits of integer values. For some 

series of these complexes [4-6], the 

mathematical processing of the experimental 

data and the computerized calculation of the 

equilibrium model are impossible without 

preliminary information on the composition of 

the complexes. This information can be 

obtained through functional transformations of 

experimental data in the form of additional 

concentration functions and their derivatives 

[7-9]. At the same time, in the presence of a 

vast volume of experimental data, in case of 

their uniform distribution, along with the 

graphic processing, it is necessary to use 

numerical analysis methods [10, 11]. 

In this paper, the polynuclear systems are 

analyzed, for which the family of curves 

intersects at a point. The theoretical analysis 

of the correlation between the position of the 

intersection point and the composition of the 

complexes has been the subject of discussion 

in a series of papers [12-18]. The authors [12-

14] found a criterion for the appearance of the 

real and the apparent intersection point. It has 

been shown that there are two conditions for 

the appearance of the real intersection point: 

(a) the derivative of the formation function in 

respect to the total concentration of one of the 

components under the invariability conditions 

for the second component must be zero and 

(b) the sign of these variables change as they 

pass through the common point of 
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intersection. In the present work, to 

demonstrate the significance of the derived 

earlier expressions, a series of real important 

systems have been taken into consideration. 

 

EXPERIMENTAL PART 

It has been examined the systems, in which 

reactions with the formation of mononuclear 

complexes MLn and polynuclear complexes 

MqLp take place according to the general 

scheme: 

)0,(,  nZnMLnLM n
                                                                  (1) 

)0,1,,(,  pqZpqLMqLpM qp                                                     (2) 

These two types of reactions are described by the following equilibrium constants: 
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where [M] and [L] denote the equilibrium 

concentrations of the metal ion and ligand, 

correspondingly. 

The partial molar fractions fn and fpq for 

mononuclear and polynuclear complexes 

respectively may be written as 
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In a previous paper [18], the authors showed 

that the derivative of the formation function Z 

with respect to the total (analytical) 

concentration of the metal ion M can be 

expressed by the partial molar fractions fpq as 

follows: 
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For these systems at the common intersection 

point with the coordinates (Z, -log [L]) 

derivative   0ln
][


LMCZ . The expression 

obtained for the formation function at this 

intersection point is: 
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It allows to demonstrate that there are three 

distinct classes of polynuclear systems, for 

which the formation function Z does not depend 

on the equilibrium concentration [M], therefore 

the conditions for the real intersection point are 

met [18]. 

 

System 1. Initially, a system, in which a series 

of mononuclear complexes ML, ML2,…, MLN 

and one polynuclear complex MPLQ are 

simultaneously formed, is analyzed. For this 

system, based on Eq. (4), the following 

relations may be obtained [18]: 

Q
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When a single complex MLN is formed, the following expressions are valid: 
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  ]log[logloglog LNPQNPN                                                                (8) 

]log[]log[log][loglog LPMQ
PQN

QN
MCMQP 










                             (9)  

Thus, if the coordinates of the intersection point 

 ]log[;/ LQP   and [M] for CM  = const are 

known, the stability constants of the complexes 

MLN  and 
QPLM  may also be calculated from 

Eqs. (8) and (9).  

 

System 2. A series of mononuclear complexes 

and a series of polynuclear complexes MpLq, 

(MpLq)2,…, (MpLq)x are formed, where x  Z, x 

> 1. From Eq. (4), at the intersection point, it 

results qpZ  . The stability constants of 

mononuclear complexes are interdependent 

according to Eq. (6). If a mononuclear complex 

NML and two polynuclear complexes 
pqLM and 

pQLM  ( pxPqxQ  , ) are formed, from Eq. 

(4), taking into account Eq. (9), the following 

conclusions can be derived: 

 ZnZLn  loglog]log[log                                                                    (10) 

M

pxqx

qp

pq

qp CM
pnq

nq
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 ][][][][][                                             (11) 

Therefore, if the coordinates of the common 

intersection point are known, then from the Eq. 

(10) the complex stability constant is easily 

calculated. The stability constants of the 

polynuclear complexes MqLp and MQLP can be 

calculated by solving the system from two 

equations (11) for two values different CM. 

 

System 3. A series of mononuclear complexes 

and a series of polynuclear complexes
PQLM  are 

formed, where 0,,,  pZpQconstQ . From 

Eq. (4) the following expressions are obtained: 
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Thus, for this system, the value of the formation 

function Z at the intersection point depends on 

both the composition and the stability of the 

formed complexes. If only one mononuclear 

complex is formed, its stability constant is 

calculated by Eq. (10). If the system contains 

two polynuclear complexes 
pQLM and 

sQLM then their stability constants are 

calculated using the equation 

  )()log(]log[loglog QZspQZLspQpQs                                  (14) 

In all the analyzed examples, the value 

[ ]L depends only on the composition of the 

formed complexes and on the stability of the 

mononuclear complexes. The Z value is a 

function of the stability constants of the 

complexes only for the last considered system. 

 

RESULTS AND DISCUSSION 

To elucidate the concrete practice of the above 

expressions, some real polynuclear systems 

have been analyzed.  

 

Germanic acid and polygermanates 

Previously it was obtained a family of the 

titration curves pH versus the number OH- 

added per Ge for different total germanium 

concentration CGe, which were intersected at the 

point (0.6; 8.8) [16]. These data were 

interpreted as evidence for the species H2GeO3, 
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1151152

2

33 ,,, OHGeOGeHGeOHGeO and 

2

115OGe . For the quantitative description of the 

equilibria in this system the authors [16] used 

the following model:  
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The graphical data )( pHfZ   of the work [16] 

plotted for different total germanium 

concentration CGe, (Fig. 1) show an intersection 

point at Z 0.36 and pH = 4.92, that is a clear 

indication for the formation of certain 

polynuclear complexes. Our analysis of possible 

mononuclear and polynuclear species by the Eq. 

(4)-(7) indicated that by adding OH- to Ge(OH)4 

solutions the anions  2

223 )(,)( OHGeOOHGeO  

and 3

384 )))(( OHOHGe  are formed. The 

assumption that other species, 2

115OGe and 

3

167OHGe  should be formed, was tested. It was 

found that neither of them could explain the data 

[16]. By applying Eq. (5) to the Z value at the 

intersection point, if only one polynuclear 

complex is present, the formation of the following 

complexes PQ OHOHGe )())(( 4


 is possible: 

384 )())(( OHOHGe  ,)())(( 4114

OHOHGe  

5144 )())(( OHOHGe and so on. Using Eq. (6) 

for the 
384 )())(( OHOHGe complex, one 

obtains: 

14.6log;1038.1
][13
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, 

e.g. the same value as in paper [16]. For other 

possible complexes at the intersection point 

(0.36; 4.92), 4114 )())(( OHOHGe  and 

5144 )())(( OHOHGe , Eq. (6) gives the negative 

values. On the other hand, in the case of 

formation of the 
384 )())(( OHOHGe  complex, 

from Eq. (6) one gets: 

69.4log;1075.4
][5

][133
1

4
2

2
1 












OH

OH
, 

which is very close to the value found in [16], 

68.4log 1  . The applying Eq. (6) to other 

possible complexes 4114 )())(( OHOHGe  and 

5144 )())(( OHOHGe  gives some 1  values 

with no physical meaning. 

 
Fig. 1. Experimental data plotted as curves,

GeCOHZ ])(log[ 
, t = 25℃ at CGe=0.040, 0.030, 0.025 

and 0.020 mol/L [16] 
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Zn2+- 2-mercaptopropionic acid (thiolactic acid, TLA) system 

The formation curves obtained by Brabander et 

al. [19] for this system where CZn was varied 

from 0.002 to 0.032 mol/L have a common 

intersection point  
ZnCLZ ]log[; with the 

coordinates (1.33; 6.91) (Fig. 2). The presence 

of the common point is a strong indication for a 

mixture of polynuclear and mononuclear 

complexes. In Table 1 three equilibrium 

models, used by the authors [19] for the system 

TLAZn 2 , are shown for computer analysis of 

the experimental data.  

 

 
Fig. 2. Formation curves for the TLAZn 2  system [19] 

 

Table 1. The equilibrium models in the Zn2+ - thiolactic acid system [19] 

Model number Species Stability constant 

 ZnL2 14.30 

I 
43LZn  34.92 

II 

ZnL2 

43LZn  

22LZn  

14.32 

34.78 

17.29 

III ZnL 

ZnL2 

6.85 

14.34 

 
43LZn  34.79 

 

For model III, Eq. (6) takes the form: 
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These calculated values are close to those from 

those tabulated (see Table 1). For the model I 

the inconsistent value of the stability constant 

for the mononuclear complex ZnL2 was 

obtained. Therefore, this model must be 

discarded. Consequently, now it is possible to 

choose between model II and model III. 

Unfortunately, if at the common intersection 

point two polynuclear complexes of the 

composition Zn3L4 and Zn2L2are formed, this 

point is not a real one [12, 13] and the derived 

equations (4)-(14) are not applicable for this 

model.  
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Mono- and polynuclear hydroxocomplexes of the dimethyltin(IV) ion in aqueous solution 

The hydroxocomplexes of the dimethyltin (IV) 

ion were studied in solutions with [ClO4
-] = 

3.00 mol/L by e.m.f. measurements of [H+] 

[20]. Figure 3 gives the data Z(-log[H+]) with 

the total dimethyltin(IV) concentration as a 

parameter as calculated from the e.m.f. data. 

The system exhibits a common intersection 

point at Z of about 1.43 and -log[H+] = 5.5. The 

existence of this common point indicates that 

the degree of polymerization of the system is a 

maximum at this pH and the further addition of 

OH- converts the polymeric species to 

monomeric or at least to polymeric species with 

lower degrees of polymerization and with 

higher ligand-metal ratios. Throughout the 

entire range of the data, 1.0 ≤ pH ≤ 8.0, the 

measurements were explained only by assuming 

the formation of five complexes [20], according 

to the hydrolysis reactions (the notation 
  22

23)( MSnCH is used): 

45.3log, 112

2   HMOHOHM  

00.9log,2)(2 1222

2   HOHMOHM  

70.4log,2)(22 22

2

222

2   HOHMOHM  

80.9log,3)(32 23322

2   HOHMOHM  

30.10log,4)(43 23

2

432

2   HOHMOHM  

If one supposes that in this system four 

complexes are formed in significant quantities, 
without 2

43 )(OHM , then it is possible to apply 

Eqs. (12) and (13): 
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As can be seen, the obtained values are close to 

the formation function value at the intersection 

point, Z = 1.44. To obtain a more exact value 

for Zpoly, perhaps, it is necessary to consider the 

formation of the polynuclear complex 

2

43 )(OHM , but this task is beyond the scope of 

this paper because in this case, the intersection 

point is an apparent one [12, 13].  

 
Fig. 3. The average number of OH- bound per dimethyltin(IV), Z, as a function of -log [H+] for the 

values of the total [(CH3)2Sn2+] from 1x10-3 mol/L to 8ꞏ10-2 mol/L [20] 
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Mono- and polynuclear species in system B(OH)3 – H2O  

Experimental data obtained by authors [21] in 

the form of formation curves are shown in Fig. 

4. The formation curves 
BCHfZ ])(log[   

intersect at the point (0.39; -8.8). Researchers 

[21] proposed the following model of equilibria 

in this system:  

.16.20log,4)(2)(3

,56.11log,4)()(3

,00.9log,)()(

3224334

312

2
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From Eq. (12) it follows: 
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and 

98.8)1log(]log[loglog 1   ZHZ  

Consequently, the obtained K11 value is 

practically the same as in [21]. From the other 

hand, Eq. (13) for this system is: 
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                                                                  (18) 

 

Comparing values of Zmono and Zpoly from Eqs. 

(17) and (18), one can mention that the first 

value practically coincides with the 

experimental one, while the second Z value 

differs by 0.14 unit. This discrepancy between 

the experimental and the calculated values (18), 

using the assumed values of the stability 

constants [21], proves that the model (16) has 

not been self-consistent. One of the reasons 

might be the absence of some chemical species, 

as suggested by the authors [21]. However, the 

alternative set of complexes, including in 

addition to the model (16) the complex 
2

644 )(OHOB , does not fall within the class of 

polynuclear systems examined here, because 

the common point of intersection is apparent. 

 

 
Fig. 4. The average number of OH- bound per boron, Z, as a function of -log [H+] at constCB   [21] 

 

CONCLUSIONS 

The common real intersection point in the 

diagram 
MCLfZ ])(log[ contains useful 

information regarding the equilibrium model for 

the polynuclear systems, e.g. the nature, 

composition and thermodynamic stability of the 

mononuclear and polynuclear system.  
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The stability constants, calculated with the 

expressions, derived earlier by one of the authors, 

can be used as initial values in the iterative 

calculation process, as well as for the verification 

of existing tabular data. In some cases, it is 

possible to calculate the stability constants using 

only the coordinates of the common real 

intersection point. The obtained equations are of 

special interest when the experimental data may 

be interpreted in several models. In these cases, 

given a large volume of experimental data, the 

calculation is simple and the model can certainly 

be chosen large. As it has been shown above, the 

obtained equations can also be used for critical 

evaluation if the coordinates of the real 

intersection point are known. 

Nevertheless, it should be noted that this approach 

contains some limitations. Firstly, it is applicable 

for the determination of stability constants only 

for chemical species, which are formed under the 

conditions of the intersection of formation curves. 

Secondly, the above equations are applicable only 

for certain models. Thirdly, the experimental data 

must cover an adequately large range of 

component concentrations to bypass potential 

mistakes in interpreting the nature of the common 

point of intersection. 
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